Sufficient dimension reduction in regressions across heterogeneous subpopulations
نویسنده
چکیده
Sliced inverse regression is one of the widely used dimension reduction methods. Chiaromonte and co-workers extended this method to regressions with qualitative predictors and developed a method, partial sliced inverse regression, under the assumption that the covariance matrices of the continuous predictors are constant across the levels of the qualitative predictor. We extend partial sliced inverse regression by removing the restrictive homogeneous covariance condition. This extension, which significantly expands the applicability of the previous methodology, is based on a new estimation method that makes use of a non-linear least squares objective function.
منابع مشابه
Sufficient dimension reduction and prediction in regression.
Dimension reduction for regression is a prominent issue today because technological advances now allow scientists to routinely formulate regressions in which the number of predictors is considerably larger than in the past. While several methods have been proposed to deal with such regressions, principal components (PCs) still seem to be the most widely used across the applied sciences. We give...
متن کاملEstimating Sufficient Reductions of the Predictors in Abundant High-dimensional Regressions by R. Dennis Cook1, Liliana Forzani
We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are ...
متن کاملDimension-Reduction in Binary Response Regression
The idea of dimension-reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a pre-specified model. Focusing on the central subspace, we investigate such “sufficient” dimension-reduction in regressions with a binary response. Three existing methods, SIR and pHd and SAVE, and one new method DOC are studied for thei...
متن کاملDimension Reduction in Regressions with Exponential Family Predictors
We present first methodology for dimension reduction in regressions with predictors that, given the response, follow one-parameter exponential families. Our approach is based on modeling the conditional distribution of the predictors given the response, which allows us to derive and estimate a sufficient reduction of the predictors. We also propose a method of estimating the forward regression ...
متن کاملOn model-free conditional coordinate tests for regressions
Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005